metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.52D6, C6.902+ 1+4, (C2×C12)⋊14D4, D6⋊3D4⋊40C2, C12⋊3D4⋊29C2, (C2×D4).230D6, C12.252(C2×D4), (C22×D4)⋊14S3, C24⋊4S3⋊13C2, (C2×D12)⋊57C22, (C2×C6).300C24, C4⋊Dic3⋊78C22, C6.147(C22×D4), (C22×C4).288D6, C23.12D6⋊28C2, C2.93(D4⋊6D6), (C2×C12).545C23, C3⋊6(C22.29C24), (C4×Dic3)⋊42C22, (C2×Dic6)⋊68C22, (C6×D4).271C22, (C23×C6).79C22, C6.D4⋊39C22, C23.26D6⋊33C2, C23.146(C22×S3), C22.313(S3×C23), (C22×C6).234C23, (C22×S3).131C23, (C22×C12).277C22, (C2×Dic3).155C23, (D4×C2×C6)⋊7C2, (C2×C4)⋊6(C3⋊D4), (S3×C2×C4)⋊31C22, C4.97(C2×C3⋊D4), (C2×C4○D12)⋊29C2, (C2×C6).583(C2×D4), (C2×C3⋊D4)⋊28C22, C22.36(C2×C3⋊D4), C2.20(C22×C3⋊D4), (C2×C4).628(C22×S3), SmallGroup(192,1364)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.52D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=d, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
Subgroups: 904 in 334 conjugacy classes, 111 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C22×C6, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C4⋊1D4, C22×D4, C2×C4○D4, C4×Dic3, C4⋊Dic3, C6.D4, C2×Dic6, S3×C2×C4, C2×D12, C4○D12, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, C23×C6, C22.29C24, C23.26D6, C23.12D6, D6⋊3D4, C12⋊3D4, C24⋊4S3, C2×C4○D12, D4×C2×C6, C24.52D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C3⋊D4, C22×S3, C22×D4, 2+ 1+4, C2×C3⋊D4, S3×C23, C22.29C24, D4⋊6D6, C22×C3⋊D4, C24.52D6
(2 8)(4 10)(6 12)(13 19)(15 21)(17 23)(25 44)(26 39)(27 46)(28 41)(29 48)(30 43)(31 38)(32 45)(33 40)(34 47)(35 42)(36 37)
(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 24)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(25 44)(26 45)(27 46)(28 47)(29 48)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(36 43)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 30 7 36)(2 35 8 29)(3 28 9 34)(4 33 10 27)(5 26 11 32)(6 31 12 25)(13 42 19 48)(14 47 20 41)(15 40 21 46)(16 45 22 39)(17 38 23 44)(18 43 24 37)
G:=sub<Sym(48)| (2,8)(4,10)(6,12)(13,19)(15,21)(17,23)(25,44)(26,39)(27,46)(28,41)(29,48)(30,43)(31,38)(32,45)(33,40)(34,47)(35,42)(36,37), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,44)(26,45)(27,46)(28,47)(29,48)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(36,43), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,30,7,36)(2,35,8,29)(3,28,9,34)(4,33,10,27)(5,26,11,32)(6,31,12,25)(13,42,19,48)(14,47,20,41)(15,40,21,46)(16,45,22,39)(17,38,23,44)(18,43,24,37)>;
G:=Group( (2,8)(4,10)(6,12)(13,19)(15,21)(17,23)(25,44)(26,39)(27,46)(28,41)(29,48)(30,43)(31,38)(32,45)(33,40)(34,47)(35,42)(36,37), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,44)(26,45)(27,46)(28,47)(29,48)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(36,43), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,30,7,36)(2,35,8,29)(3,28,9,34)(4,33,10,27)(5,26,11,32)(6,31,12,25)(13,42,19,48)(14,47,20,41)(15,40,21,46)(16,45,22,39)(17,38,23,44)(18,43,24,37) );
G=PermutationGroup([[(2,8),(4,10),(6,12),(13,19),(15,21),(17,23),(25,44),(26,39),(27,46),(28,41),(29,48),(30,43),(31,38),(32,45),(33,40),(34,47),(35,42),(36,37)], [(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,24),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(25,44),(26,45),(27,46),(28,47),(29,48),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(36,43)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,30,7,36),(2,35,8,29),(3,28,9,34),(4,33,10,27),(5,26,11,32),(6,31,12,25),(13,42,19,48),(14,47,20,41),(15,40,21,46),(16,45,22,39),(17,38,23,44),(18,43,24,37)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 6A | ··· | 6G | 6H | ··· | 6O | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | C3⋊D4 | 2+ 1+4 | D4⋊6D6 |
kernel | C24.52D6 | C23.26D6 | C23.12D6 | D6⋊3D4 | C12⋊3D4 | C24⋊4S3 | C2×C4○D12 | D4×C2×C6 | C22×D4 | C2×C12 | C22×C4 | C2×D4 | C24 | C2×C4 | C6 | C2 |
# reps | 1 | 1 | 2 | 4 | 2 | 4 | 1 | 1 | 1 | 4 | 1 | 4 | 2 | 8 | 2 | 4 |
Matrix representation of C24.52D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
10 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[10,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[0,10,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,12,0,0,0] >;
C24.52D6 in GAP, Magma, Sage, TeX
C_2^4._{52}D_6
% in TeX
G:=Group("C2^4.52D6");
// GroupNames label
G:=SmallGroup(192,1364);
// by ID
G=gap.SmallGroup(192,1364);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,675,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations